小E的怪物挑战
问题描述
小E在一个游戏中遇到了
n个按顺序出现的怪物。每个怪物都有其特定的血量h[i]和攻击力a[i]。小E的初始血量为H, 攻击力为A。
游戏规则如下:
- 小E可以击败血量和攻击力都小于她当前属性的怪物
- 对于每只怪物,小E可以选择与它战斗或者跳过这只怪物
- 为了保持战斗节奏,要求击败的怪物序列中,后一个怪物的血量和攻击力都必须严格大于前一个怪物
小E想知道,她最多能击败多少怪物。
-
输入
n:怪物的数量H:小E的血量A:小E的攻击力h[i]:第i个怪物的血量a[i]:第i个怪物的攻击力
-
输出
- 返回小E最多能击败的怪物数量
-
约束条件
1 < n < 1001 < H, A, h[i], a[i] < 1000
测试样例
样例1:
- 输入:
n = 3, H = 4, A = 5, h = [1, 2, 3], a = [3, 2, 1]- 输出:
1
样例2:
- 输入:
n = 5, H = 10, A = 10, h = [6, 9, 12, 4, 7], a = [8, 9, 10, 2, 5]- 输出:
2
样例3:
- 输入:
n = 4, H = 20, A = 25, h = [10, 15, 18, 22], a = [12, 18, 20, 26]- 输出:
3
样例4:
- 输入:
n = 4, H = 20, A = 25, h = [22, 18, 15, 10], a = [26, 20, 18, 12]- 输出:
1
解题思路
- 初始化:创建一个动态规划数组
dp,其中dp[i]表示以第i个怪物结尾的最长严格递增子序列的长度。 - 状态转移:对于每个怪物
i,遍历之前的所有怪物j,如果怪物j的血量和攻击力都小于怪物i,则更新dp[i]。 - 结果:最终结果是
dp数组中的最大值。
代码实现
Cangjie
func solution(
n: Int64,
H: Int64,
A: Int64,
h: Array<Int64>,
a: Array<Int64>
) {
var cnt = 0;
let dp = Array<Int64>(n, repeat: 0);
for (i in 0..n) {
if (H > h[i] && A > a[i]) {
dp[i] = 1
for (j in 0..i) {
if (h[j] < h[i] && a[j] < a[i]) {
dp[i] = max(dp[i], dp[j] + 1)
}
}
cnt = max(dp[i], cnt)
}
}
cnt
}
main(){
println(solution(3, 4, 5, [1, 2, 3], [3, 2, 1]) == 1);
println(solution(5, 10, 10, [6, 9, 12, 4, 7], [8, 9, 10, 2, 5]) == 2);
println(solution(4, 20, 25, [10, 15, 18, 22], [12, 18, 20, 26]) == 3);
}
Rust
fn solution( n: i32, h: i32, a: i32, heights: Vec<i32>, ages: Vec<i32> ) -> i32 { let mut cnt = 0; let mut dp = vec![0; n as usize]; for i in 0..n { if h > heights[i as usize] && a > ages[i as usize] { dp[i as usize] = 1; for j in 0..i { if heights[j as usize] < heights[i as usize] && ages[j as usize] < ages[i as usize] { dp[i as usize] = dp[i as usize].max(dp[j as usize] + 1); } } cnt = cnt.max(dp[i as usize]); } } cnt } fn main() { println!("{}", solution(3, 4, 5, vec![1, 2, 3], vec![3, 2, 1]) == 1); println!("{}", solution(5, 10, 10, vec![6, 9, 12, 4, 7], vec![8, 9, 10, 2, 5]) == 2); println!("{}", solution(4, 20, 25, vec![10, 15, 18, 22], vec![12, 18, 20, 26]) == 3); }
Python
def solution(n: int, H: int, A: int, h: list, a: list) -> int:
cnt = 0
dp = {}
for i in range(n):
if H > h[i] and A > a[i]:
dp[i] = 1
for j in range(i):
if h[j] < h[i] and a[j] < a[i]:
dp[i] = max(dp[i], dp[j]+1)
cnt = max(dp[i], cnt)
return cnt
print(solution(3, 4, 5, [1, 2, 3], [3, 2, 1]) == 1)
print(solution(5, 10, 10, [6, 9, 12, 4, 7], [8, 9, 10, 2, 5]) == 2)
print(solution(4, 20, 25, [10, 15, 18, 22], [12, 18, 20, 26]) == 3)
JavaScript
function solution(n, H, A, h, a) {
let cnt = 0;
let dp = {};
for (let i = 0; i < n; i++) {
if (H > h[i] && A > a[i]) {
dp[i] = 1;
for (let j = 0; j < i; j++) {
if (h[j] < h[i] && a[j] < a[i]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
cnt = Math.max(dp[i], cnt);
}
}
return cnt;
}
console.log(solution(3, 4, 5, [1, 2, 3], [3, 2, 1]) === 1);
console.log(solution(5, 10, 10, [6, 9, 12, 4, 7], [8, 9, 10, 2, 5]) === 2);
console.log(solution(4, 20, 25, [10, 15, 18, 22], [12, 18, 20, 26]) === 3);
复杂度分析
- 时间复杂度:
O(n^2),其中n为数组的长度。- 空间复杂度:
O(n),其中n为数组的长度。